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RIEMANNIAN MANIFOLDS ADMITTING AN INFINITESIMAL
CONFORMAL TRANSFORMATION

KENTARO YANO & HITOSI HIRAMATU

1. Introduction

Let M be an n-dimensional connected Riemannian manifold with positive
definite metric of differentiability class C*. We cover M by a system of co-
ordinate neighborhoods {U; x*}, and denote by g;;,V;, K;;:*, K;; and K the
fundamental metric tensor field, the operator of covariant differentiation with
respect to the Levi-Civita connection, the curvature tensor field, the Ricci
tensor field and the scalar curvature field of M respectively. Here and in the
sequel indices 4, i, j, k, - - - run over the range {1, - - -, n}.

We denote by C,(M) the largest connected group of conformal transforma-
tions of a Riemannian manifold M, and by I,(M) the largest connected group
of isometries of M.

Riemannian manifolds with constant scalar curvature field admitting an in-
finitesimal nonhomothetic conformal transformation have been extensively
studied and we know the following theorems.

Theorem A (Yano and Nagano [381). If M is a complete Einstein mani-
fold of dimension n > 2 and

1.1 CM) # I(M) ,

then M is isometric to a sphere.

(See also Bishop and Goldberg [3].)

Theorem B (Nagano [23)). If M is a complete Riemannian manifold of
dimension n > 2 with parallel Ricci tensor field and (1.1) holds, then M is iso-
metric to a sphere.

Theorem C (Goldberg and Kobayashi[5],[61,[71). If M is a compact
homogeneous Riemannian manifold of dimension n > 3, and (1.1) holds, then
M is isometric to a sphere.

Theorem D (Lichnerowicz [22]). If M is a compact Riemannian manifold
of dimension n>2, K = const., and K; K/* = const., then (1.1) implies that
M is isometric to a sphere.

Theorem E (Hsiung [11), [12), [13]). If M is compact and of dimension
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n> 2, K = const., and K, ;;,K*** = const., then (1.1) implies that M is
isometric to a sphere.

Theorem F (Obata [27], Yano [331). If M is compact, orientable and of
dimension n > 2 with constant K, and admits an infinitesimal nonhomothetic
conformal transformation v* so that

(1.2) L8 = 2084 »

&, denoting the Lie derivation with respect to v*, such that

(1.3) j G,ploidv >0,
M
where
' 1
(1.4 Gy =K — ;ngi s

and o’ = g%, py = Vp, dV being the volume element of M, then M is iso-
metric to a sphere.

Theorem G (Yano [33]). If M is compact and of dimension n > 2 with
constant K, and admits an infinitesimal nonhomothetic conformal transforma-
tion v® satisfying (1.2) such that

(1.5) PG, =0

or

(1.6) L o ZyginZ®t) =0,

where

(1.7 Zih = Kijt — — K (Stg,: — 024

nn—1)

then M is isometric to a sphere.

(See also Hiramatu [10].)

Theorem G, which is a generalization of Theorem D and Theorem E, has
been further generalized by Obata and one of the present authors [40].

Theorem H (Goldberg [4]). If M is compact and of dimension n>> 2 with
constant K, and admits an-infinitesimal nonhomothetic conformal transforma-
tion v* satisfying (1.2), then

(1.8 . Kp* < n(n — 1P ;0)(FpY) ,

where V' = gi'F,;, equality holding if and only if M is isometric to a sphere.
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One of the present authors showed that the compactness here can be replaced
by completeness (Yano [34]).

Theorem ¥ (Yano [34]). If M is compact, orientable and of dimension
n > 2 with constant K, and admits an infinitesimal nonhomothetic conformal
transformation v" satisfying (1.2), then

(1.9) n(n — 1) j K.opdV < K j odv
M e

equality holding if and only if M is isometric to a sphere.

(See also Hiramatu [9].) _

The assumption K = const. in all the above theorems is based on the follow-
ing result of Yamabe [30].

Theorem J. For any Riemannian metric given on a compact C~-differen-
tiable manifold of dimension n > 3, there always exists a Riemannian metric
which is conformal to the given metric and whose scalar curvature field is a
constant.

To prove that a complete Riemannian manifold is isometric to a sphere, the
following theorem due to Obata [24], [25], [26] is very useful:

Theorem K. If a complete Riemannian manifold M of dimension n > 2
admits a nonconstant function p such that

(1.10) VJV,LP = _cngji N

where c is a positive constant, then M is isometric to a sphere of radius 1/c
in (n 4 1)-dimensional Euclidean space.

One of the present authors tried to replace the condition K = const. in
above theorems by

(1.11) £, K=0,

and obtained the following theorems.

Theorem L (Yano [35]). If M is a compact orientable Riemannian mani-
fold of dimension n > 2, and admits an infinitesimal nonhomothetic conformal
transformation v* satisfying (1.2), (1.11) and

(1.12) f (Kﬁpfpi — ——I_KZpZ)V >0,
4 nin — 1)

then M is conformal to a sphere.

Theorem M (Yano [35]). If M is a compact orientable Riemannian mani-
fold and of dimension n > 2, and admits an infinitesimal nonhomothetic con-
formal transformation v* satisfying (1.2) such that (1.11), (1.5) and
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1

1.1
(1.13) o—

j K2gtdV gj Koip'dV
M M

or (1.11),(1.6) and (1.13) hold, then M is conformal to a sphere.
We note here that the conditions (1.11), (1.5) and (1.11), (1.6) are respec-
tively equivalent to the conditions

LK=0, LKKD)=0 and LK=0, LKijnK"") =0.

To prove these theorems, the following theorem due to Tashiro (see [29]
and also Ishihara [18], Ishihara and Tashiro [19]) is used.

Theorem N. If a compact Riemannian manifold M of dimension n > 2
admits a nonconstant function p such that

(1.14) Vo= %A.ogﬁ ,

then M is conformal to a sphere in (n + 1)-dimensional Euclidean space.

Sawaki and one of the present authors [42] proved the following three
theorems.

Theorem O. If a complete Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation v* satisfying
(1.2) and (1.1), then we have (1.8) where the equality holds if and only if M
is isometric to a sphere.

Theorem P. If a compact Riemannian manifold M of dimension n > 2

admits an infinitesimal nonhomothetic conformal transformation v* satisfying
(1.2),(1.11) and

(1.15) K*o* = ko™,
k being a constant satisfying
(1.16) Kt < nk?,

then M is isometric to a sphere.

Theoerm Q. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2) and (1.11), then

(1.17) n(n — 1) f K,olo'dV < f Ktdv
M M
equality holding if ahd only if M is isometric to a sphere.

Hsiung and Stern [16], [17] proved
Theorem R. Suppose that a compact Riemannian manifold M of dimen-
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sion n > 2 admits an infinitesimal nonhomothetic conformal transformation
o™ satisfying (1.2) and (1.11). If one of the following conditions is satisfied,
then M is conformal to a sphere:

(1.18) VP V.F = Kopgy;, F being a scalar field on M ,

(1.19) Kot = LV (Ko) and VVuKo) = KV Vs,
n

1.20) LKy = gy, a being a scalar field on M .

For generalizations of the above theorems to the case of conformal changes
of metric, see Barbance [2], Goldberg and Yano [8], Hsiung and Liu [14],
Hsiung and Mugridge [15] and Yano and Obata [40], and for further results
on conformal transformations see Yano [36], [37].

The purpose of the present paper is to eliminate the condition K = comnst.
or #,K = 0 in the above theorems concerning Riemannian manifolds admit-
ting an infinitesimal conformal transformation.

In the sequel, we need the following theorem due to Tashiro [29]:

Theorem S. If a complete Riemannian manifold M of dimension n > 2

admits a complete vector field v* satisfying (1.2) and (1.14) with nonconstant
0, then M is isometric to a sphere.

2. Lemmas

Lemma 1 (Lichnerowicz [21], Saio [28], Yano [32], [36]). For a vector
field v* in a compact orientable Riemannian manifold M, we have

[ (57700 + Ko+ =2 pop Yosa
b n
@1 + o [ (P4 por = 2
: 2 Jx n
. (Vjvz + Vivj - —Q’—stsgji>dV = O .
n
Proof. By a straightforward computation, we have
Vz-[(V’v” + Pt — —%Vzv‘g“)vh] = (gﬁVjViv” + KMt + —n—'_—zV"Vivi)vh
n n
1 Fa4t 1oy d 2 Lot 2 8
+ > Pivt + Piod — Z P 085 ) (Vo + Viv; — SV 0% ),
n n

and consequently, integrating over M we have (2.1).
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Remark. If a vector field v* defines an infinitesimal conformal transfor-
mation, then we have (1.2), i.e.,

(2.2) Vv, + Vv, — EVtv‘gﬁ =0.
) n

From this, we can deduce
2.3) PT T + Kot 4 D= 2prpat — 0
n

Formula (2.1) shows that this is not only necessary but also sufficient in
order that the vector field v* define an infinitesimal conformal transformation
in a compact orientable Riemannian manifold.

Lemma 2 (Yano {33]).  For a function p in a compact orientable Rieman-

nian manifold M, we have

J.M (3“‘71 Vip" + Kot + ﬂ%-g—V"Ap)pth

2.4) 1 !
2 (Pot — 208 )(7s0 — L dpgs)av =0,
M n n

[, [@ 7o + Koron — " — 2 dpr|av

2.5) 1 1
+ ZJ. (Vjpi — —Apg”)(Vjpi — —Apgji)dV =0,
M n n

where p; = V,p, p" = p,g"* and dp = g’V ;¥ p.
Proof. Putting v = p* in (2.1) and using F/p* = F*p!, we obtain (2.4).
(2.5) follows from (2.4) because of

(2.6) L (7" dp)ondV = — jM dpydv .
Lemma 3 (Yano [33]). For a function p in a Riemannian manifold M, we
have
2.7 V*dp = gl V;o" — K;*ot ,
that is,
2.8 gV =Vrdp + K 2p' .

Proof. We have
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Vidp =V, (877 ;0,) = gﬁVthPi
= gff(Vthpi - Khjit,ot) = gﬁVjV';Pn — Ky'o; s

from which (2.7) follows.
Lemma 4. For a function p in a compact orientable Riemannian manifold

M, we have

J (Kﬁ!”!’i + =Ly n"f’)dV
M n

(2.9 1 1
M n n

J' [Kﬁpjpi _ fir_l(dp)Z]dV

M n

2.10) | |

+ J (pri — —Apgji><l7jpi — —Apgji>dV ~0.
M n n

Proof. Substituting (2.8) in (2.4) we have (2.9), and substituting (2.8) in
(2.5) we have (2.10).

Lemma 5 (Yaro [31]). For an infinitesimal conformal transformation v*
in a Riemannian manifold, we have

(2.11) gkajih = —5ZVJPi + 5?Vk,0i - (Vkph')gji + (Vjph)gki )
(2.12) LKy = —(n— Z)Vjpi — dpgy; ,
(2.13) LK = —2n— 1)dp — 2Kp .

Proof. We can prove these using (1.2) and the following formulas for Lie
derivatives:

(2.149) L™} = 0%p: + 0tp; — 80" »
(2-15) gkajih = ngv{jhi} - ngv{khi} ’

{;™} being Christoffel symbols formed with g;,.
Lemme 6. For an infinitesimal conformal transformation v" in a Rieman-
nian manifold M satisfying (1.2), we have

2.16) LGy=—0n— 2)<Vjpi - %Apgﬂ) ’

gvzkﬁh = —51’5‘71&' + 5,’;Vkpi it (Vkph')gji + (Vjph')gki

2.
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where G, and Z ;™ are given by (1.4) and (1.7) respectively.

Proof. (2.16) follows from (2.12) and (2.13), and (2.17) follows from
(2.11) and (2.13).

Lemma 7. If a compact orientable Riemannian manifold M of dimension

n > 2 admits an infinitesimal conformal transformation v* satisfving (1.2),
then

1 1
2.18 do = — Ko — 2K,
(2.18) e n—1 ¢ 2n=1
(2.19) _[ KodV =0,

M
(2.20) _[ LKAV =0 .

M

Proof. (2.18) follows from (2.13). Using (2.18),

@.21) _[ AfdV =0,  (f: ascalar field on M)
M

for f = p,

2.22) 2K =0vTK,

(2.23) Vot = np

and V,(viK) = KPP v* + v K, and applying the well-known Green’s formula
we readily obtain (2.19), which together with (2.18) and (2.21) for f=p
implies (2.20). It should be remarked that (2.20) shows that if % K = const.
then £, K = 0.

Lemma 8. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal conformal transformation v* satisfying (1.2),
then

. 1 1

2.24 if‘dV=W'[ Ko'dV *__[ L, K)pdV

(2.24) .[Mg”"” a1 ) BV gy ) e
Proof. (2.24) follows from integration over M of

2.25) %Aw) = oo + 2’0" »

and use of (2.18) and (2.21) for f =
Remark. If a compact orientable Riemannian manifold with K = const.
admits an infinitesimal nonhomothetic conformal transformation v* satisfying
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(1.2), then (2.24) implies that KX > 0, and therefore that K = 0 (Kurita [20])
since otherwise’o; = 0 which means that v* is homothetic.

Lemma 9. If a compact orientable Riemannian manifold M admits an in-
finitesimal conformal transformation v* satisfying (1.2), then

(2.26) f K,v'p'dV + (n — 1)f guplgidV = 0.
M M

Proof. Using (2.22), (2.2), (2.23), (2.13), (2.25) and
(2.27) VK;; =4V K,
by direct covariant differentiation we easily obtain
Vi(K;v'0) = —3(n — 14D + (n — Dgyup’e* + Kyv7pt .

Thus integrating this over M, we obtain (2.26).
Lemma 10. If a compact orientable Riemannian manifold M of dimension

n > 2 admits an infinitesimal conformal transformation v* satisfying (1.2),
then

f Kp'p'dV — _.J__f @Ko + ZK)dV
u dn(n — 1) Ju
(2.28) = 1 5 j [2,;26,2(;:z n -;—pf,,(GjiGji)]dV
+ o[ {Kow - nl S T2k + (1 DK K (2 KV .

Proof. Substituting (2.16) in
gv(GjiGji) = z(vaﬂ)Gﬂ — 4pGj,LGJ7' N
and using g;,G’* = 0 and (1.4) we obtain

1

@29) K= -1 [2pGﬂGﬂ +5 2 (G6%)| + 1Ko
n

On the other hand, direct covariant differentiation gives
(2.30) VK 00%) = 30 Koo' + Kup’p® + oK 76t
2.31) V(Kpo") = (7 Koo' + Kpio* + Kodp

where we have used (2.27) for (2.30). Eliminating K,,//7p* and (F,K)pp* from
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(2.29), (2.30) and (2.31), integrating the resulting equation over M, and using
(2.13) we can easily obtain

” n—2Jx 2

(2.32) .
1 [ kopav — f Ko(2Kp + 2,K)dV .
+ > IM 040 (n D o(2Kp +

Thus substracting

_~4n(n — f QKp + ZKydv
(2.33)
1 202 4 4K K)ld
4n(n_1)j [4K?0* + 4KpL K + (Z.KV1dV

from (2.32), we reach (2.28).

Lemma 11. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal conformal transformation v* satisfying (1.2),
then

1
KifidV—-_—f 2Ko + Z,K¢dV
.[M "o n—1) M( e+ )

4n(

1

= lf [Pzzkjihzkﬂh + —pL o (Zyjin Zkﬁh)]dV
2 Jx 4

1{{ ) 1
L0 (koo — — 1 onkee
L P L e T

+ (0 + DKoL K + (£.K)1}aV

(2.34)

Proof. Substituting (2.17) in
LAZyj:n L) = UL 23 1MV ZR — BpZy i n 2K
and using (2.13), Z,,;! = G;, £;;G?* = 0 we find
Lol ZyjinZ*) = —8G V0t — 4pZy;:n 24,
or, in consequence of (1.4),

(2.35) K Fip = _% 0Zyin ZEI — %zv(zk,ihzw) + LKap .
n

On the other hand, using (2.27) and direct covariant differentiation we have
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(2.36) Vj(KjiPPi) = 3(V.K)pp* + Kjipjpi + oK; V7ot .

Eliminating K ;F¥’p* and (7,K)pp* from (2.35), (2.36) and (2.31), integrating
the resulting equation over M, and using (2.13) we can easily obtain
[ Kapoav = L[ 0202 + 5 02 Zusuzr|av
s 2 Jn 4
2.37) ; 5
+ _I Kow'dV — =2 _ j KoQKp + ZK)dV .
2 b dn(n—1) Jx

Thus substracting (2.33) from (2.37) we reach (2.34).

3. Propositions

Proposition 1. If a compact Riemannian manifold M of dimension n > 2
admits a nonconstant function p, then

(.1) —’1;(40)2 < (P00

equality holding if and only if M is conformal to a sphere.
Proof. (3.1) is equivalent to

(VjPi - —1"4"03”)(71% - L A.ngi) >0,
n o n

equality holding if and only if (1.14) holds, that is, by Theorem N, if and
only if M is conformal to a sphere.

Proposition 2. If a complete Riemannian manifold M of dimension n > 2
admits a complete infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2), then

L QKo+ 2K < T 00

(3.2 4dn{n — 1)

equality holding if and only if M is isometric to a sphere.

Proof. (3.2) follows from (2.13) and (3.1) immediately, and the equality
holds if and only if (1.14) does, that is, by Theorem S, if and only if M is
isometric to a sphere.

Remark. If #,K =0, then (3.2) becomes (1.8), and consequently Proposi-
tion 2 generalizes Theorem H.

Proposition 3. If a compact Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation v* satisfying
(1.2) such that
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for a certain function F on M, then M is isometric to a sphere.
Proof. From (3.3) and (2.13) we find

(3.4) VJV.LF = —(n - I)Apgh s

which implies 4[F + n(n — 1)p] = 0, and consequently F + n(n — 1)p =
const., from which it follows that

(3'5) VszF + n(n - l)VjV.Lp = O .

Comparison of (3.5) with (3.4) gives (1.14). Thus, by Theorem S, M is iso-
metric to a sphere. '
Proposition 3 generalizes Theorem R (1).
Proposition 4. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p such that

(3.6) Ko+ = Lprap =0,

then M is conformal to a sphere.

Proof. Multiplying (3.6) by 2 and adding the resulting equation to (2.7),
we obtain (2.3). Thus by the remark on Lemma 1 we see that p* defines an
infinitesimal conformal transformation and consequently that (1.14) holds.
Hence, by Theorem N, M is conformal to a sphere.

Proposition 5. If a compact Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation v* satisfying
(1.2) and (3.6), then M is isometric to a sphere.

Proof. From the proof of Proposition 4, M admits an infinitesimal nonho-
mothetic conformal transformation v” satisfying (1.2) and (1.14), and conse-
quently, by Theorem S, M is isometric to a sphere.

Remark., If ¥ K = 0, then due to (2.13) the condition (3.6) becomes the
first equation of (1.19). Thus Proposition 5 generalizes Theorem R (2).

Proposition 6. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p, then

1 2
: [, cprav,

3.7) [, Kuptotav < "

equality holding if and only if M is conformal to a sphere.

Proof. (3.7) follows from (2.10), and the equality holds if and only if (1.14)
does, that is, if and only if M is conformal to a sphere.

Corollary. [f a compact orientable Riemannian manifold M of dimension
n > 2 admits a nonconstant function p such that

(3.8) [ [Kuwte = "= Ligor|av >0,
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then M is conformal to a sphere.

Proposition 7. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2), then

3.9 f Kjiplp'dV < J (2Kp + £, K)dV ,

(—1)

equality holding if and only if M is isometric to a sphere.

Proof. This follows from (2.5), (2.13) and Theorem S.

From Proposition 7, we have

Proposition 8. If a compact orientable Riemannian manifold M of dimen-
sion n> 2 admits an infinitesimal nonhomothetic conformal transformatzon pr
satisfying (1.2) such that

@10 [, Kot — T e+ LI 20,
then M is isometric to a sphere.

If #,K = 0, then (3.10) becomes (1.12), and consequently Proposition 8
generalizes Theorem L. For this generalization, see also Ackler and Hsiung [1].

If moreover K = const., then (1.3) follows from (2.24) and (1.12). Thus
Proposition 8 generalizes Theorem F.

Proposition 9. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satsfying (1.2) and (1.15) with a constant k satisfying

3.11) (2Kp + Z,KY < 4n*k*p* ,

then M is isometric to a sphere.
Proof. Substituting (1.15) in (2.26), eliminating J 0:v*dV from the result-
M
ing equation and the equation obtained by integrating ¥ ,(pv") = pF ,v* + p,v*

over M, and using (2.23) we readily obtain

(3.12) nk L{ PdV = (n — 1) L 207ptdV .

On the other hand, from (1.15), (3.11) and (3.12) it follows that
fﬂ K,plp'dV = k IM guppldV = IM otV

1
>~ | (Kp+ £.K):dV .
_4n(n_1)JM( o+ )
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Thus, by Proposition 8, M is isometric to a sphere.

If #, K = 0, then (3.11) becomes (1.16), and consequently Proposition 9
generalizes Theorem P.

Proposition 10. If a complete Riemannian manifold M of dimensionn > 2
admits a complete infinitesimal nonhomothetic conformal transformation v* sat-
isfying (1.2) and (1.20), then M is isometric to a sphere.

Proof. From (2.12) and (1.20) we have

1

V i=_
0 PR

(@ + 4p)gy; »

and consequently, by Theorem S, M is isometric to a sphere.

Proposition 10 generalizes Theorem R (3).

Proposition 11. If a compact orientable Riemanian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2), (1.5) and

J kow'dV
M

> L Kt + (1 + DRpL K + (LKFIV
2n(n — 1) Ju

then M is isometric to a sphere.

Proof. Under these assumptions, (2.28) implies (3.10), and consequently
Proposition 11 follows from Proposition 8.

It # K = 0, then (3.13) reduces to (1.13), and consequently Proposition
11 generalizes the first part of Theorem M.

Proposition 12. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2), (1.6) and (3.13), then M is isometric to a sphere.

Proof. Under these assumptions, (2.34) implies (3.10), and consequently
Proposition 12 follows from Proposition 8.

Proposition 12 generalizes the second part of Theorem M.
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